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Executive Summary 
 
The increasing share of renewable energy, progressive market integration, and slow grid expansion 
have significantly heightened the demand and cost for flexibility in European electricity markets. The 
growing mismatch between renewable generation and high-load demand areas has intensified 
congestion, often managed through redispatching. However, market-based remuneration of 
redispatch remains contentious due to the risk of inc-dec gaming, necessitating market design 
improvements that incentivize flexibility provision while ensuring system efficiency.  
Within the DigIPlat project, we explore bid forwarding as a mechanism to enhance flexibility utilization. 
Our conceptual framework allows flexibility service providers (FSPs) to forward unaccepted bids across 
markets, increasing activation probabilities and available volumes. We develop a use case in which 
transmission system operators (TSOs) can activate balancing capacity market bids not only for 
balancing energy but also for redispatch. Assessing the strategic risks and impacts of such mechanisms 
is challenging due to scalability limitations and the unrealistic perfect information assumptions in 
conventional models. To address this, we develop an agent-based model leveraging deep 
reinforcement learning (DRL) to simulate multi-market interactions and strategic bidding behavior. We 
validate our approach by benchmarking it against state-of-the-art optimization methods and applying 
it to a four-market model, integrating balancing capacity, balancing energy, day-ahead, and redispatch 
markets, along with a grid model to capture congestion dynamics. Additionally, we analyze strategic 
behavior using a virtual power plant (VPP) representing a photovoltaic (PV) owner. Within this setup, 
we evaluate the agent’s performance under two conditions: (1) a baseline scenario, where the four 
markets operate (i.e., without the use case), and (2) an extended use case, where bid forwarding is 
introduced as an additional market mechanism.  
Our results confirm that DRL matches optimization benchmarks in controlled environments and 
outperforms them in complex, multi-market settings, where scalability constraints limit traditional 
approaches. In the four-market baseline scenario, the DRL agent successfully exploits flexibility 
markets while increasing total system costs, demonstrating its adaptability in this intricate market 
structure. However, in the use case scenario, its efficiency in redispatch gaming diminishes due to 
imperfect information, leading to more conservative bidding behavior despite its local market power. 
In contrast, the MILP-based VPP agent, operating under full market knowledge, exhibits less 
conservative behavior when applying the use case but ultimately follows a less profitable strategic 
approach compared to the DRL agent. Interestingly, these findings imply that higher system flexibility, 
despite the presence of local market power, does not inherently increase gaming risks. Instead, greater 
uncertainty in congestion patterns may discourage strategic exploitation, as failed attempts can carry 
legal and financial consequences. These insights highlight the need for robust market design that 
balances efficiency, flexibility, and safeguards against gaming risks in evolving electricity markets.  
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Kurzfassung 
 
Der wachsende Anteil erneuerbarer Energien, die fortschreitende Marktintegration und der langsame 
Netzausbau haben den Bedarf an und die Kosten für Flexibilität auf den europäischen Strommärkten 
erheblich erhöht. Das zunehmende Ungleichmäßige Verteilung zwischen Erzeugungsgebieten 
erneuerbarer Energien und Regionen mit hoher Lastnachfrage verstärkt Netzengpässe und erhöht die 
Nachfrage nach Redispatch-Maßnahmen. Die marktbasierte Vergütung von Redispatch bleibt jedoch 
umstritten, da sie das Risiko für Inc-Dec-Gaming birgt. Um Anreize für die Bereitstellung von Flexibilität 
zu schaffen und gleichzeitig die Systemeffizienz zu gewährleisten sind daher Marktdesign Anpassungen 
erforderlich. Im Rahmen des DigIPlat-Projekts untersuchen wir daher Bid Forwarding als Mechanismus 
zur verbesserten Nutzung und Bereitstellung von Flexibilitäten. Unser konzeptioneller Rahmen 
ermöglicht es Flexibilitätsdienstleistern (FSPs), nicht angenommene Gebote auf andere Märkte zu 
übertragen, wodurch sowohl die Aktivierungswahrscheinlichkeit als auch das insgesamt verfügbare 
Angebotsvolumen erhöht werden. In diesem Zusammenhang analysieren wir einen Use Case, in dem 
Übertragungsnetzbetreiber (TSOs) Gebote aus dem Regelkapazitätsmarkt nicht nur für die 
Bereitstellung von Regelenergie, sondern auch für Redispatch aktivieren können. 
Die Bewertung strategischer Risiken und Auswirkungen solcher Mechanismen stellt allerdings eine 
Herausforderung für konventionelle Modellierungsansätze dar, da diese nur schwer skalierbar sind 
und oft unrealistische Annahmen über perfekte Information treffen müssen. Um diesen 
Herausforderungen zu begegnen, entwickeln wir ein agentenbasiertes Modell auf Basis von Deep 
Reinforcement Learning (DRL), um strategisches Bietverhalten in einem Multi-Markt System zu 
simulieren. Wir validieren unseren Ansatz, indem wir ihn mit State-of-the-Art-Optimierungsmethoden 
vergleichen und auf ein Vier-Märkte-Modell anwenden, das Regelkapazität, Regelenergie, den Day-
Ahead-Markt und einen Redispatch-Markt integriert, einschließlich eines Netzmodells zur Abbildung 
von Engpassdynamiken. Zusätzlich analysieren wir das strategische Verhalten eines virtuellen 
Kraftwerks (VPP), das einen Photovoltaik-(PV)-Betreiber repräsentiert. Innerhalb dieses Setups 
bewerten wir die Leistung der Agenten unter zwei Bedingungen: (1) einem Baseline-Szenario, in dem 
die vier Märkte ohne Bid Forwarding betrieben werden (d. h. ohne den Use Case), und (2) einem 
erweiterten Use Case, in dem Bid Forwarding als zusätzlicher Marktmechanismus eingeführt wird. 
Unsere Ergebnisse zeigen, dass DRL die Ergebnisse etablierter Optimierungsmodelle replizieren kann 
und in komplexeren Multi-Markt-Szenarien überlegen ist, da die Skalierbarkeit dieser Modelle hier 
begrenzt ist. Im Baseline-Szenario mit vier Märkten nutzt der DRL-Agent seine Marktmacht, um die 
Flexibilitätsmärkte erfolgreich auszunutzen, was zu höheren Gesamtsystemkosten führt. Im Use-Case-
Szenario nimmt jedoch seine Effizienz im Redispatch-Gaming aufgrund unvollständiger Informationen 
ab, was trotz weiterhin vorhandener lokaler Marktmacht zu vorsichtigerem Bietverhalten führt. Im 
Gegensatz dazu zeigt der MILP-basierte VPP-Agent, der mit vollständiger Marktinformation agiert, ein 
weniger konservatives Verhalten im Use Case, folgt jedoch letztlich einer weniger profitablen 
strategischen Herangehensweise im Vergleich zum DRL-Agenten.Diese Ergebnisse deuten darauf hin, 
dass eine höhere Systemflexibilität trotz lokaler Marktmacht nicht zwangsläufig zu einem Anstieg der 
Gaming-Risiken führt. Vielmehr kann eine erhöhte Unsicherheit über Netzengpässe strategische 
Ausbeutung erschweren, da gescheiterte Manipulationsversuche rechtliche und finanzielle 
Konsequenzen nach sich ziehen können. Unsere Erkenntnisse unterstreichen die Notwendigkeit eines 
robusten Marktdesigns, das Effizienz, Flexibilität und Schutzmechanismen gegen Gaming-Risiken in 
sich wandelnden Strommärkten vereint. 
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1. Introduction 
 
The ongoing integration of renewable energy resources into the European grid system is altering 
market dynamics by changing the distribution of the actual dispatch and loads in time and space, 
leading to an increased need of congestion management. Consequently, this creates new possibilities 
for strategic behavior among power plant operators. For instance, electricity providers may engage in 
gaming tactics, such as intentionally contributing to congestion. As a result, topology-agnostics 
become more relevant for markets, creating situations where market players can suddenly achieve 
market power due to their location. A notable example is inc-dec gaming (increasing-decreasing 
gaming), where agents withhold or overbid their capacity on the day-ahead market to increase their 
margins on redispatch markets due to local market power [1]. These changes challenge the prevailing 
dynamics of existing short-term electricity markets while also offering new beneficial prospects.  
To address these developments, enhancing the integration of flexibilities is crucial, not only to ensure 
grid security but also counteract gaming. However, this process is challenging due to the technical 
diversity of available flexibilities and the complex array of supply opportunities. Therefore, the aim of 
the project DigIPlat is (1) to develop a standardized framework for interoperable flexibility platforms, 
and (2) to standardize flexibility products. In this work package we focus on the latter by assessing the 
economic impact of coordinated capacity procurement from the existing balancing capacity market for 
potential use in redispatch scenarios. This corresponds to the definition of Use Case 2 “Coordinated 
Capacity Procurement” (see [2]). The coordination implies the idea of value stacking of flexibility 
products via bid forwarding1, specifically, it is intended to increase the activation probability of 
capacities from flexibility suppliers.  

Beyond the notion of increasing incentives for firms, it is crucial to ensure that such changes do not 
adversely affect socio-economic costs. This deliverable emphasizes evaluating the added value of 
coordinated procurement while controlling for its impact on socio-economic costs. In other words, the 
main objective of this work package is to increase bidding flexibilities for firms without creating 
additional socio-economic burdens. To address these two perspectives, we employ a mixed integer 
linear program (MILP) to assess the enhanced flexibility of a virtual power plant comprising a solar and 
battery storage provider, alongside a deep reinforcement learning (DRL) approach to exploit bidding 
strategies across different markets. While MILP optimally determines volume allocation across 
markets, it is limited by the availability of historical data and faces challenges in identifying gaming 
opportunities between diverse markets. To overcome this, we apply DRL to simulate data from a non-
existing market design, incorporating market-based redispatch and coordinated capacity 
procurement, allowing for exploration of this scenario. DRL generates the necessary data through 
simulation and is designed to explore optimal actions online without preexisting knowledge. In this 
context, we use DRL to act as an "attacker" in the analyzed market situation, aiming to identify 

 
1 For further details on bid forwarding, see Deliverable 3.2: "Standardized Flexibility Products and 
Attributes" (https://www.digiplat.eu/scientific-dissemination). 

Figure 1: Illustration of the bid forwarding approach. 

https://www.digiplat.eu/scientific-dissemination
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potential "worst-case" market abusive behavior. A similar notation for using DRL in electricity systems 
is also applied by [3]. 

 
The contributions of this deliverable can be summarized as follows: 
1. Establishing how Deep Reinforcement Learning (DRL) can be utilized to assess strategic behavior 

across multiple interconnected markets, thereby overcoming existing model limitations. 
2. Applying this method to gain new insights into the role of inc-dec gaming within the context of 

market-based redispatch procurement. 
3. Leveraging this approach to explore new opportunities for coordinated flexibility procurement in 

balancing and redispatch markets. 
 

In this deliverable, we first present an overview of the definition of Use Case 2, our key point indicators 
(KPIs) and the application of DRL in electricity auction modeling and. Next, we describe the model 
setup, including the electricity market environment, bidding-agent architecture, and data used for 
different scenarios. This is followed by the results section, which compares our use case to a 
benchmark without coordinated capacity procurement. Additionally, as the simulation approach is 
closely aligned with the methodology outlined in Deliverable 5.1 [4], we include the corresponding 
results for a flexibility provider, represented by the virtual power plant, in this deliverable. Finally, we 
discuss the outcomes with respect to pre-defined KPIs and conclude with our findings. 
 
  



 
 

8 
 

2. Description Use Case 2 and KPIs 
 
The primary goal of coordinated capacity procurement for redispatch and balancing is to assist 
providers in offering their flexibility in various electricity markets through product standardization and 
bid forwarding. This method aims to increase the activation probability of offers by simplifying their 
availability across multiple markets, thereby enabling value stacking. The concept of bid forwarding is 
elaborated in more detail in Deliverable 3.2 – Standardized flexibility products and attributes [5]. To 
illustrate the benefits of product standardization and bid forwarding, we target enhanced capacity 
procurement for ancillary services in our use case. Specifically, we examine the impact of integrating 
redispatch - a currently non-market-regulated ancillary service that is gaining attention due to 
increasing needs and costs - with an established balancing market like aFRR. Our objective is to 
coordinate their procurement to potentially create positive synergies. Beyond the potential increase 
in market liquidity, the primary advantage aligns with our main goal: simplifying flexibility 
procurement. Therefore, our primary focus is not on reducing social welfare costs, but rather on 
increasing the capacity to provide and procure energy without disrupting existing market designs. This 
approach makes market participation more accessible, especially for flexibility providers not primarily 
involved in this business, such as demand response, households, or small power plant owners. 
 
The use case can be summarized as follows: 
“Assuming product standardization, enabling bid forwarding from accepted balancing capacity bids to 
be available for a potential redispatch market, and subsequently to the balancing energy market. For 
both balancing energy and redispatch, activated capacity is compensated with an additional energy 
price, based on bids that can be individually selected for each market.” 

 
To analyze this use case, the following key performance indicators (KPIs) have been identified: 

I. Procurement Deficit: This KPI examines the impact of using balancing capacity for redispatch on 
balancing energy procurement. Since the required volumes for redispatch and balancing energy 
are highly divergent, activation of balancing capacity for redispatch might result in a deficit of 
capacity available for balancing energy, which will be highlighted in the analysis. 

II. Economic Impact: This KPI assesses the effect of joint balancing capacity and redispatch 
procurement on overall socio-economic costs. The intention is to evaluate whether the use case 
leads to an increase, decrease or no significant change in gaming activities on redispatch markets 
due to the coordinated capacity procurement. 

III. Impact of Gaming: This KPI investigates socio-economic costs? considering inc-dec gaming. 
Besides unknown potential gaming strategies arising from this use case, there are existing issues 
without this use case regarding the procurement of redispatch in the form of inc-dec gaming. To 
address this, we allow inc-dec gaming to occur with known parameters and observe its effects on 
the use case. This approach helps us understand whether the coordinated capacity procurement 
impacts inc-dec gaming without explicitly addressing the issue itself. 
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3. Strategic Bidding with Reinforcement Learning 
 
Recent advancements in DRL have demonstrated its ability to navigate complex model environments 
and optimize strategic decisions [3], [6], [7], overcoming limitations of commonly used optimization 
algorithms. Traditional optimization solvers lack the capability to incorporate non-convex parameters, 
assume complete knowledge of market competitors and conditions, as well as model dynamics, and 
typically focus on either price or volume bidding [8], [9]. Based on the recent developments of 
reinforcement learning (RL) algorithms they gain growing attention in power systems research as an 
alternative to MPEC (Mathematical Program with Equilibrium Constraints) or EPEC (Equilibrium 
Program with Equilibrium Constraints) methods in electricity market modeling, e.g., in [6], [8]. A 
comprehensive review of RL in deregulated energy markets is given by [10]. In RL, an optimal solution 
is attained through the facilitation of a Markov Decision Process (MDP) [11]. This framework is 
described by having a state space 𝑆, an action space 𝐴, a transition probability distribution 
𝑃(𝑠!"#|𝑠! , 𝑎!) , and a reward function 𝑅(𝑠! , 𝑎!). The policy 𝜋(𝑠!) = 𝑎! determines the action executed 
at state 𝑠𝑡, iteratively updated to maximize rewards, effectively shaping the evolving strategy. The 
return ℛ = ∑ 𝛾!𝑟!"#%

!&'  describes the discounted cumulative reward, where 𝛾 ∈ [0,1] serves as the 
discount factor accommodating immediate and future reward valuation, as expressed by the Bellman 
equation [11]. The MDP is defined as a sequential decision-making process, the future state and reward 
(𝑠!"#, 𝑟!"#) solely dependent on the current state and action (𝑠! , 𝑎!). An optimal policy entails 
maximizing the action value function, commonly recognized as the Q-function, 
 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) ≈ 𝑚𝑎𝑥𝜋𝐸𝜋[𝑅𝑡|𝑠𝑡, 𝑎𝑡]. 
  
A detailed explanation about RL can be found in [12].  
 
Unlike transforming the bi-level optimization into a single-level MPECs, RL solves it recursively: agents 
progressively enhance strategies through experiences from iterative interactions with the market 
clearing process. Here, market players rely solely on their operating parameters and observed market 
outcomes, without knowledge of competitors' operational details. Omitting the need for equivalent 
Karush-Kuhn-Tucker (KKT) optimality conditions enable the incorporation of non-convex agent 
attributes into the market clearing process (i.e., unit commitment), despite that solution optimality 
cannot be assured theoretically. Nevertheless, certain investigations center on confirming model 
reliability, demonstrating equivalent accuracy to game-theoretical driven approaches: [13] exhibits the 
effectiveness of utilizing RL in converging to Nash Equilibriums for learning bidding strategies in a 
duopoly day-ahead market. [14] shows the reliance of competition on the discount factor, ranging 
between complete competitiveness and tacit collusion. [8] compared a MPEC model with a deep 
reinforcement learning algorithm, demonstrating that while there is no significant difference in 
performance in convex environments, RL significantly outperforms MPEC in non-convex problem 
formulations.  Conversely, EPEC and MPEC solvers encounter limitations as increasing model 
complexity challenges their foundational assumptions, leading to intractable solutions. In contrast, RL 
algorithms are versatile in diverse environments, albeit without guaranteed determining the optimal 
solution in finite-time; however, they frequently yield pragmatic strategies approximating real 
strategic behavior, giving valuable insights for adapting market-designs reasonably.  
Hence, agent-based model frameworks employing RL for strategic decision-making processes can 
incorporate more complex models without imposing further assumptions. The framework necessitates 
solely a single assumption regarding market participant behavior: their pursuit of profit maximization 
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in the face of uncertainty. However, real-world agents often exhibit behaviors that deviate from 
rational profit optimization, despite their underlying objective to maximize returns. Considerations as 
risk-aversion and short-termism can be factored rational within the context of more intricate utility 
functions than the strict expected profits. Thus, the incorporation of uncertainties originating from the 
market environment can be readily accommodated as well. RL methodologies can adapt to such 
models merely by adjusting the reward function appropriately. These model designs enable the agent 
not only to learn optimal response strategies, akin to EPEC models, but also potentially to demonstrate 
genuine market manipulation tactics, such as spoofing2 [15]. This ability for adapting behavior can 
further be exemplified by the recent findings of [16] who illustrated how RL algorithms can utilize 
strategic bluffing to outmaneuver opponents in the game Stratego. 
It is important to acknowledge that the mentioned ability of utilizing RL for complex problems stems 
from the advancement of DRL. Algorithms like the deep deterministic policy gradient (DDPG) [17] are 
effectively applicable for continuous action spaces and improved learning efficiency through the 
integration of neural networks. In DRL, neural networks are utilized as function approximator using an 
actor-critic architecture. The critic, i.e., Q-network, 𝑄(𝑠, 𝑎|𝜃)) outputs a single value that rates the 
performance of the actor network, i.e., policy-network, 𝜋(𝑠|𝜃*), which outputs an action on a 
continuous action space. With 𝜃 representing the weights of the neural networks. The agent learns its 
behavior by storing its gathered experience in a memory buffer 𝑀 and samples to train the neural 
networks. An illustrative overview of how DRL is deployed together with an electricity market model 
is given in Figure 2. 
 
 
  

 
2 Spoofing is a manipulative trading practice where a trader places orders with the intent to cancel them before they 
are executed, creating a false impression of market demand or supply. The trader benefits by executing trades at 
artificially favorable prices based on the misleading signals they generated. 

Figure 2: Deployment of deep reinforcement learning (DRL) integrated with an electricity market model within an agent-based 
model framework. 
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4. Method 
 
In this section, we detail the different types of scenarios simulated, along with an overview of the 
market environment and market players involved, to evaluate the KPIs for our Use Case (see Section 
2.). We particularly emphasize the architecture of the reinforcement learning agents (RL-agents) used 
in the simulations. Alongside RL-agents, we employ mixed-integer linear programming-based agents 
(MILP-agents) and rule-based agents (RB-agents). 
The MILP-agents and RL-agents are designed to analyze different types of behavior. RL-agents assess 
the impact of gaming behavior, while MILP-agents focus on optimal volume allocation of a virtual 
power plant (VPP) with installed photovoltaic (PV) and battery storage. Consequently, these two types 
of agents are never included in a single simulation simultaneously. The RB-agents are based on a well-
known scenario from the literature [18], which we extended by incorporating historical data for Austria 
from November 2022 to October 2023. This approach results in two kinds of RB-agents: those that 
behave based on pre-determined best-response functions (based on [18]), representing conventional 
and renewable electricity providers, and additional conventional power providers that always bid their 
full capacity at actual market prices (based on historical data). This setup guarantees significant 
competition among agents with established Nash Equilibria, while also contending with actual 
historical clearing prices. The MILP-agents are outlined in more detail in Deliverable 5.1 [4] and 
therefore are not described further here. 

 
 

4.1. Market Environment and Data 
 
The market environment is based on the Chao and Peck 6-bus network [19], utilized for similar use 
cases in, e.g., [18] and [20] to assess the role of inc-dec gaming3 in sequential electricity markets, 
including redispatch. Our focus is on the implementation from [18], expanding their scenario to 
encompass the balancing capacity and energy markets, alongside the day-ahead and redispatch 
markets. The paper's original example examines inc-dec gaming in market-based redispatch, finding 
that agents strategically leverage their local positions to maximize profits through elevated redispatch 
prices. Given that most European countries still compensate redispatch based solely on incurred costs, 
there is no comprehensive data available for our case study. Consequently, we rely on this studied 
example from the literature and incorporate real data where available. The limited data further 
highlights the benefits of using RL to learn “online” without any pre-existing knowledge (see more 
details about RL below in 4.2 Reinforcement Learning Agent Architecture. Additionally, this framework 
enables us to validate the learned policy of our RL-agents by comparing scenarios with known Nash 
Equilibria. Apart from redispatch, we use load and price data for Austria from November 2022 to 
October 2023, freely available from the Austrian transmission grid operator (TSO), Austrian Power Grid 
(APG). This approach is used because the literature example omits seasonal variations in market 
dynamics, instead of emphasizing optimization to achieve a Nash Equilibrium for a single time step. 
However, simulating balancing energy markets without any collected data is challenging because they 
do not follow any discernible pattern or distribution, evidenced by the difficulty in creating reliable 
forecast models for these markets [21]. In addition to market data, we incorporate weather forecasts 
and real-time availability for renewables from ENTSO-E's Transparency Platform [22]. 

 
3 For more details on inc-dec gaming with potential redispatch markets see [1]. 
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To align the applied data with the example from the literature, we scale it accordingly. For the 
day-ahead market, we employ a scaling factor 𝛼	derived by dividing the fixed demand value 𝜇+,-./  
from the paper example by the mean of the historical data 𝜇01!"#".  

𝒀 = 𝛼𝑿, 𝑤𝑖𝑡ℎ		𝛼 = 	
𝜇+,-./
𝜇01!"#"

 

This factor is subsequently applied to adjust the entire historical load dataset, including balancing 
capacity and energy. No scaling is applied to the price data from any markets or to the weather 
forecasts. Generally, in this setup, congestion occurs by separating the 6-bus network into two zones 
with limited transmission capacity between them on the day-ahead market. Congestion that needs to 
be solved via redispatch results from distributing the installed generation capacity and loads in the 
same ratio as in the paper example. By employing this scaling approach, we replicate congestion 
patterns similar to those analyzed in the literature, however, include fluctuation based on the actual 
historical load and weather data used. An overview of the 6-bus network and the capacities and MCs 
of Generators is given in Figure 3. 
In reinforcement learning, we must decide the same number of discrete actions for each market, 
necessitating a uniform time resolution across all markets, which we set to an hourly basis. For the 
balancing capacity market, which operates in six 4-hour blocks, we replicated the data for each hour 
within each block. For the balancing energy market, we created hourly samples from 15-minute data 
entries. This sampling approach was extended to generate denser samples representative of each 
season by selecting data for each day of the week based on corresponding weekdays within the season. 
To further reduce data complexity for the neural networks, we created four representative hours for 
each day of the week for each season, effectively capturing daily, weekly, and seasonal variations. This  

Market/Weather Data type Scaling Source 
Balancing 
Capacity 

Prices None APG 
Loads ∗ 𝛼  APG 

Day-ahead 
Prices None APG 
Loads ∗ 𝛼  APG 

Redispatch Prices None [18] 
Loads None  [18]  

Balancing Energy 
(aFRR) 

Prices None APG 
Loads ∗ 𝑎 APG 

Sun Solar 
availability None ENTSO-E 

!"#$ %&' ("))*$) +"),*-"./(0'1 ("2"3*14
!"#$%&G#( )( *+, -. (/.
$%&G#0 )0 *+, -. 10
2%3+4#( )/ 56 . /.
2%3+4#0 )7 56 . /189

:+4;<&+3#$%&G#( )9 *+, (.. 9..
:+4;<&+3#$%&G#0 )= *+, (.. 9..

Figure 3: Overview of the 6-bus network, including 
generator and line capacities. 

Table 1: Generator names, location, technology, marginal 
costs, and capacities. 
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method allows us to train on a variety of scenarios derived from the same dataset, incorporating 
stochasticity that reflects these temporal effects. A more detailed explanation of the data sampling 
process is provided in the Appendix. Figures 4-6 offer an overview of the data used, including an 
example of a sampled set employed in the simulation. Table 2 summarizes the data types, sources, and 
any applied scaling. 
For the four distinct markets included in this study, we employ uniform pricing for the day-ahead and 
balancing energy markets and pay-as-bid pricing for the balancing capacity and redispatch market, 
reflecting real-world practices. All markets, except for redispatch, are modeled as zonal markets, 
consistent with common European practices.  

The overall market clearing process is structured as followed: 
• Day-Ahead Market: We solve a linear optimal power flow (LOPF) for market clearing, disregarding 

line capacities, except for the cross-border lines. 
• Post Day-Ahead Congestion Check: We solve another LOPF, this time considering line capacities, 

to identify any congestion. 
• Redispatch Market: If congestion is detected, a call for redispatch bids is issued, and the market is 

cleared using nodal pricing to resolve congestion. 
• Balancing Energy Market: We focus solely on the secondary energy market (aFRR)  due to its 

competitive pricing and operational flexibility compared to primary (FCR) and tertiary (mFRR) 
energy markets. 

We assume a Colombian bidding format, with single divisible bids for each hour and agent in each 
market, involving volume and price decisions. Additionally, we apply the following criteria for balancing 
capacity and energy bids: 

• Accepted Capacity Bids: Negative capacity bids from the balancing capacity market are mandated 
to be offered in the day-ahead market at the price floor. Positive capacity bids are withheld for the 
markets they are reserved for. 

• Balancing Energy Bids: These are automatically generated based on accepted capacity bids, 
allowing only decisions on the energy price. No additional free bids are considered. 

Table 2: Summary of data types, sources and applied 
scaling 

 

Figure 6: Distribution of solar data, including a sampled 
subset used for simulation. 

Figure 5: Distribution of balancing energy load data, 
including a sampled subset used for simulation. 

Figure 4: Distribution of day-ahead load data, including a 
sampled subset used for simulation. 
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Table 3: Overview market implementations. All markets are solved in 4 x 1-hour blocks4. 

Market GCT Pricing Rule Forwarding 

Balancing 
Capacity 

D-1, 
10:00 Pay-as-Bid +/- accepted bids get reserved 

Day-ahead D-1, 
12:00 

Pay-as-
Cleared - reserved capacities are forced to be offered at price floor 

Redispatch D-1, 
18:00 Pay-as-Bid 

Only for UC2: +/- reserved capacities are converted into 
energy bids. Free bidding is allowed; single price bids are 

added. 

Balancing 
Energy T-25min Pay-as-

Cleared 
+/- reserved capacities are converted into energy bids. Free 

bidding is not allowed; only price bids are added. 

 
 
 

4.2 Reinforcement Learning Agent Architecture 
 
Our implemented RL-agents are based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) 
algorithm [23], which is one of the state-of-the-art methods suitable for continuous action spaces. TD3 
is model-free, meaning it does not have access to or information about the model environment itself, 
a common characteristic in Equilibrium Problems with Equality Constraints (EPEC) often used to 
determine the role of gaming, as in [18]. It trains off-policy and online, collecting data during training 
from the environment dynamics and storing it in a replay buffer. For policy updates, batches are 
sampled from this buffer. As described in Section 3., TD3 employs an actor-critic architecture for 
function approximation to estimate the maximum expected discounted future reward. The critic, i.e., 
Q-network, 𝑄(𝑠, 𝑎|𝜃)) outputs a single value that rates the performance of the actor network, i.e., 
policy-network, 𝜋(𝑠|𝜃*), outputting the action, i.e., bids. Where 𝑠, 𝑎 and 𝑟 represent the state, action, 
and reward, respectively, and 𝜃 the weights of the neural network. The Q-network is updated using 
the following loss function: 
 

𝐿 = 	
1
𝑁
I(𝑦2 − 𝑄(𝑠2 , 𝑎2|𝜃)))3
2

 

 
where 𝑁 is the number of sampled transitions L𝑠2 , 𝑎2 , 𝑟2 , 𝑠2"#M from the memory buffer. The loss is 
calculated as the average loss over each of these sampled transitions. The target 𝑦2  is defined as: 
 

𝑦𝑗 = 𝑟𝑗 + 𝛾𝑄
′ &𝑠𝑗+1, 𝜋′ &𝑠𝑗+1'𝜃

𝜋′(	'𝜃𝑄
′
. 

 

𝑄9 and 𝜋9 are target networks, which represent copies of the actor and critic with parameters 𝜃𝑄
′
←

𝜃𝑄, 𝜃𝜋
′
← 𝜃𝜋 to avoid interdependencies during updating. The target networks are updated as follows: 

 
4 The implementation of all markets is also detailed in Deliverable 5.1 “Integration of standardized 
flexibility requirements and multi-market commercialization of flexibility in virtual power plant” 
(https://www.digiplat.eu/scientific-dissemination). 

https://www.digiplat.eu/scientific-dissemination
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𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
,	 

𝜃𝜋
′
← 𝜏𝜃𝑄𝜋 + (1 − 𝜏)𝜃𝜋

′
. 

 
The actor network is then updated using: 
 

∇𝜃𝜋𝐽 ≈
1
𝑁*∇𝑎𝑄 &𝑠, 𝑎	'𝜃

𝑄(
𝑗

|𝑠=𝑠𝑗,𝑎=𝜋!𝑠𝑗"	∇𝜃𝜋𝜋+𝑠,𝜃
𝜋-	|	𝑠𝑗 

 
Unlike the DDPG algorithm, TD3 addresses the overestimation of Q-values for certain states by utilizing 
a second Q-network [23]. The target value 𝑦 (see Equation ??) is defined by taking the minimum of the 
two Q-values from the separate Q-networks, 𝑚𝑖𝑛(𝑄1, 𝑄2). The resulting loss from both Q-networks is 
then summed for updating the networks. 
In reinforcement learning (RL), a critical aspect is the decision on state and action representation, 
essentially defining the input and output. The state refers to the data used as information to train the 
agent, providing it with the necessary context to recognize patterns, while the actions set the degrees 
of freedom for interacting with the environment. Additionally, defining the reward function is crucial, 
as it serves as the sole feedback mechanism for the agent's performance. Therefore, careful 
consideration of how the objective is defined significantly influences the resulting trained policy. The 
state, actions and rewards are defined as follows: 

• Actions: As previously mentioned, we sample four hours for each representative time period to 
capture daily electricity consumption patterns and fluctuations. Consequently, an agent’s action, 
comprising a price and volume bid, is represented as a 1x8 vector—consisting of 4 price bids and 
4 volume bids for each market. We employ a hyperbolic tangent activation function to map all 
actions between -1 and 1, where 1 corresponds to the maximum available volume to regulate 
upwards and -1 to the maximum volume to regulate downwards for each agent, respectively. For 
prices, 1 equates to the price cap and -1 to the price floor. To ensure the agent explores the action 
space during training, we add Gaussian noise to each action. 

• States: Based on a comprehensive investigation about various data usages, we have included the 
following variables in our final version: 
o The available capacity ("unused capacity") of the agent itself (for each hour), 
o the running energy ("used capacity") of the agent itself (for each hour), 
o the clearing prices of the last three days (for each hour), 
o available weather forecasts (sourced from ENTSO-E data) (for each hour), and 
o a proxy indicating the specific market (out of the four markets) for which the agent needs to 

output an action. 
• Reward: For the reward 𝑅, we focus on immediate profits 𝑃 from the current market session, 

represented by time step 𝑡. It is defined as the total profits from each hour ℎ within this time step, 
excluding any fixed cost. This serves as the primary objective for the agent to maximize: 
 

𝑅! =	𝑃! =I𝑆𝐶?,!

@

?

∗ L𝐶𝑃?,! −𝑀𝐶?,!M 

With 𝑆𝐶?,! being the sold capacity, 𝐶𝑃?,! the clearing price and  𝑀𝐶?,! the marginal costs. Note that 
𝑀𝐶?,!	can become negative if, for example, downward regulation leads to savings in fuel prices. 
However, since strategic interaction between markets might involve forgoing profits in one market to 
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increase profits in another, and thus overall profits, we use the return 𝐺 instead of 𝑅. 𝐺 is defined as 
the total accumulated reward from a particular time step 𝑡: 

 
 

𝐺! = I 𝛾A𝑅!"A"#

%B!B#

A&'

 

 

Here, 𝑇 represents the finite time horizon, and 𝛾	is a discount factor between 0 and 1.  Using the return 
enables the agent to make decisions considering the full bidding horizon of one day, thus we always 
take the return from a single day. Figure 7. provides a detailed overview of the TD3 architecture, 
highlighting the simulation iteration and update processes essential for optimizing the agent's 
performance. 

 

4.3 Use Case Integration and Scenario Overview 
 
To integrate our use case into the model, we extend the redispatch market framework to allow 
forwarded accepted bids from the balancing capacity (BC) market to be utilized for redispatch (RD), 
just as they are for balancing energy (BE). Specifically, in our use case, energy bids for redispatch are 
automatically formed based on the accepted capacity bids. The agent is also free to set the price at 
which this volume is offered, just as with balancing energy. However, note that free bids for redispatch 
are enabled, including those from agents with accepted capacity bids. Due to limitations in the RL-
agent's action space, a single energy price bid applies to both free and capacity-based bids. Besides 
our use case, one of our primary objectives is to evaluate the effectiveness of using RL to address 
existing model limitations. As mentioned earlier, we draw on a well-known example from the literature 
that analyzes the occurrence of inc-dec gaming with market-based redispatch, both with and without 
market power [18].   
In the results section, we first benchmark our approach and demonstrate the benefits of using RL to 
increase the degrees of freedom in deciding on price and volume bids simultaneously. Subsequently, 
we examine a scenario encompassing all four markets, incorporating data from Austria, with and 
without applying the use case. In this second batch of experiments, we also assess the role of local 
market power, a common real-world situation that enables market abuse, despite being generally 
prohibited. Finally, we include the results related to Deliverable 5.1, which involve the Mixed Integer 
Linear Program addressing perfect volume allocation for a virtual power plant comprising PV and 
battery storage. 
 
Overview of the scenarios: 
a. Benchmarking RL with established model from the literature 
b. Evaluating the use case of coordinated capacity procurement, with and without market power 
c. Assessing volume allocation for flexibility providers using a VPP featuring PV and battery storage 
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Figure 7: Comprehensive overview of the TD3 architecture, detailing the simulation iteration and update processes. 
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5. Results 
 
This section presents the validation of the implemented TD3 algorithm against established two-market 
model from the literature as well the detailed analysis of our extended four market setup.  The analysis 
covers two distinct setups: (1) Two-Markets Scenario: Day-Ahead and Redispatch. (2) Four-Markets 
Setup: Balancing Capacity, Day-Ahead, Redispatch, and Balancing Energy, including the evaluation of 
our defined use case on coordinated capacity procurement. Additionally, we present results from using 
the virtual power plant (VPP), described in detail in Deliverable 5.1, that models the behavior of a PV-
generating entity to assess the impact of increased flexibility in bidding behavior. Both, the result from 
TD3 and VPP, are shown here to facilitate comparison and draw the final conclusions regarding our 
KPIs through an integrated assessment.  
 

5.1 Two Markets: Model Validation and Gaming with Redispatch 
 
To validate our TD3 agent application, we replicated the model from [18] and replaced one of the 
conventional generators with our RL-agent. In our use case, this corresponds to the “RL Conv 1” agent 
at bus-1, similar to agent “u1” in [18]. This agent was selected due to its local market power, enabling 
it to engage in inc-dec gaming by underbidding its marginal cost on the day-ahead market to ensure 
activation and then selling energy at higher prices on the redispatch market for downward regulation. 
In [18], an EPEC model is used to find a Nash Equilibrium for all five agents, where each bids a price 
according to their best response function within a discrete decision space. We included all optimal 
bidding decisions from the other agents to compete with our RL-agent, challenging it to find this known 
equilibrium. 
The results in Figure 8 illustrate the distribution of total profits between the day-ahead and redispatch 
markets, showing that the majority originates from redispatch. This is driven by the agent exploiting 
its market power through inc-dec gaming. Our RL agent achieves nearly identical results, with only a 
0.02% deviation, which stems from the residual noise added to its bidding actions to ensure sufficient 
exploration. To investigate the capabilities of RL further, we allowed the agent to decide on its volume 
bids as well, different to the EPEC model where only price decisions are considered. We tested an 
additional scenario where the agent could bid 20% more than its installed capacity to see if it would 
strategically bid "ghost" capacity to increase profits, displayed by the right bar labeled “RL-Agent 

Figure 8: Profit distribution between day-ahead and redispatch markets across different setups. Both the Baseline-Literature 
and RL-Agent setups show similar redispatch profit shares, at 91.8% and 91.6%, respectively. The RL-Agent Bluffing setup 
exhibits an increased redispatch profit share of 147.7%, indicating more aggressive bidding strategies. 

 

91,8% 91,6%

147,7%

Baseline-Literature RL-Agent RL-Agent Bluffing

Day-ahead Redispatch
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Bluffing”. The agent learned to increase its volume bids, including ghost volume, up to a point where 
it could still predict being regulated downward via redispatch before needing to deliver the additional 
non-existent energy.  
To further demonstrate the impact of increased degrees of freedom, we applied a bluffing scenario to 
a cost-based redispatch procurement model. In this model, redispatch is remunerated solely based on 
incurred costs, while allowing the agent to profit through savings. Specifically, savings occur if the 
agent secures profits in the day-ahead market when the clearing price exceeds its marginal cost. In this 
setup, the agent achieved 35% higher profits compared to the case without volume bid decisions. 
However, total profits remain approximately one-third of those obtained under extreme conditions 
when considering market-based remuneration. This increase is primarily driven by downward 
redispatch, where the agent avoids production costs, leading to negative costs (payments from the 
transmission system operator). Importantly, the agent does not have to return the difference between 
the marginal cost and the day-ahead clearing price, due to the unrestricted nature of market 
participation. We can conclude that even without market-based redispatch procurement, there is an 
incentive to engage in gaming; however, it is important to note that the ratio between the cost and 
the market-based remuneration is about five times lower due to the restricted price margins. 
 
 

5.2 Four Markets: Analyzing Economic Impact with DRL 
 
To assess the impact of our proposed use case, we extended the two-market model from Section 5.1 
by incorporating balancing capacity and energy markets and integrating weather and load data. This 
enhancement improves the realism of market dynamics by accounting for non-Gaussian stochasticity, 
as detailed in Section 4.1. The final results are illustrated in Figure 9, where Baseline refers to the four-
market scenario with a redispatch market but without applying the use case of combined 
procurement. In contrast, Combined Procurement represents the same scenario with the use case 
applied. Compared to the Baseline scenario, this market design increases awarded flexibility (including 
balancing energy and redispatch) by nearly 10%. However, the DRL agent’s profits from redispatch 
provision decline by more than 40%, which also translates into reduced redispatch costs. Since the 

 

100% 108,5%

84,7%
100%

58,5%

27,1%

100% 95,7%

155,4%

Basline Combined Procurement Increased Volume

Awarded Flexibility Redispatch Cost Total Cost

Figure 9: Final results comparison for the four-market scenario. The Baseline represents the setup without combined 
procurement but includes market-based redispatch remuneration. Combined Procurement builds on the baseline by 
incorporating the use case, while Increased Volume extends it further by increasing balancing capacity procurement to also 
cover redispatch needs. Awarded Flexibilities include balancing energy and redispatch, while Total Costs refer to overall 
system costs. 
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agent retains local market power, it remains the sole entity influencing redispatch market prices. 
Additionally, total system costs decrease by approximately 5%. These improvements result solely from 
the introduction of bid forwarding, with all other model parameters identical to the Redispatch Market 
scenario. A closer look at the results suggests that these systemic changes stem from a shift in RL-
agents trading behavior. Increased system flexibility and a dilution of traceable action-reaction 
patterns make it more difficult to identify and exploit inefficiencies. Moreover, the remaining 
inefficiencies—despite the agent's initial market power—become harder to capitalize on due to 
heightened volatility, both in market conditions and the agent’s profits. This increased uncertainty 
discourages opportunistic strategic behavior, leading to more risk-averse bidding decisions. 
Furthermore, these findings suggest that participants in a regulator-controlled system (e.g., without 
access to confidential market information) may struggle to identify and exploit existing inefficiencies. 
 
The agent’s difficulty in sustaining high profits provides further insight into the dynamics of highly 
interdependent markets. To deepen this understanding, we introduce an additional design 
modification: increasing procured balancing capacity to better accommodate potentially higher 
redispatch peaks, referred to as Increased Volume in Figure 9. This adjustment results in a nearly 75% 
reduction in redispatch profits compared to the Redispatch Market scenario. While awarded flexibility 
(energy) decreases by approximately 25% relative to the current use case, this does not yield a net 
benefit for the system. Instead, the increased demand for balancing capacity creates new 
opportunities for strategic behavior, driving up clearing prices and ultimately raising total system costs 
by roughly 60%. 

 
 

5.3 Four Markets: Analyzing Firm Flexibility with VPP 
The market simulation with the RL-Agent revealed a noticeable change in bidding behavior: a shift in 
profit allocation between conventional electricity sales and grid services. This shift suggests a 
potentially higher opportunity for exploiting structural issues related to grid services in the Baseline 
scenario where the use case is not applied. This observation assumes that introducing the use case 
increases market and system flexibility, which may also make strategic gaming more complex. 
This change is almost negligible when analyzing the VPP results derived from the RL-Agent data, further 
supporting the previous assumption: The introduction of market-based redispatch procurement for 

situations of dominant local market power positively impacts gaming potentials from the system's 
 

Figure 10: Comparison of profit distribution between electricity sales (day-ahead market) and grid services (balancing 
capacity, balancing energy, and redispatch) for the VPP agent and RL agent. The VPP agent exhibits significantly less 
fluctuation in profit margins across scenarios, indicating lower sensitivity to strategic interactions compared to the RL agent. 
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perspective. In the case of the RL agent, this directly influences the market actor's behavior. However, 
due to the non-strategic nature of the VPP, this market design change does not demonstrate any 
significant effects. Refer to Figure 10 for a visual comparison. While the previous interpretation 
suggests that changes in market design are primarily necessitated when gaming actors make up a 
considerable portion of the overall system, the following observation highlights that such changes 
could also enhance fairness in the market. In contrast to the extreme results observed in the online 
simulation with the RL-Agent, the Increased Volume scenario under VPP participation provides a 
valuable initial insight. Restrictively low prices for (negative) balancing capacities largely hinder the 
VPP's participation in the common use-case. However, the extension of procured volume enables it to 
secure accepted bids in the market. As a result, the VPP refrains from “exploiting” additional grid 
services (balancing energy and redispatch), as the already procured - and therefore guaranteed 
capacity - appears sufficient to meet demand, outside of extreme situations. This observation suggests 
that a well-structured, regulated, and unified market for grid services, exemplified by bid forwarding 
through the combined procurement use case studied here, could offer an effective and efficient 
solution to the broader challenge of declining dispatchable capacities. 
 
A careful analysis may suggest an apparent contradiction with the findings in Section 5.2. However, we 
argue that these results arise solely due to the extreme (and unrealistic) nature of high market-power: 
The RL agent operates freely in a currently non-existing market, competing against rule-based and 
highly conservative bidders aligned with historical market results, without assuming perfect 
information. In contrast, the VPP agent, utilizing MILP-based optimization, inherently benefits from 
complete knowledge of the exploited data, allowing it to make less conservative decisions in this high-
flexibility market scenario. Mitigating such behavior—exemplified by the inherently non-gaming 
nature of the VPP—through sufficient competition could significantly reduce gaming opportunities. 
This aspect, we believe, is critical for further studies. 
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6. Conclusions 
In this study, we explored the application of reinforcement learning (RL) to address limitations in state-
of-the-art optimization methods for electricity markets. Our primary objective was to evaluate 
complex multi-market scenarios involving up to four distinct markets, where agents must align bidding 
strategies. RL serves as a tool to identify worst-case scenarios by leveraging market dynamics, 
contributing to the development of more resilient market designs resistant to gaming behavior. To 
evaluate the applicability of RL, we first validated the Twin Delayed Deep Deterministic Policy Gradient 
(TD3) algorithm against a well-established benchmark before extending the analysis to a more complex 
four-market scenario. This scenario is based on a 6-bus grid model, capturing the occurrence of 
congestion and the influence of a potential redispatch market. Additionally, we integrated historical 
weather and load data from Austria, introducing non-Gaussian stochasticity to create a more realistic 
market environment. This setup allowed us to assess our proposed combined procurement use case, 
which enables the TSO to activate awarded flexibilities from the balancing capacity market for both 
balancing energy and redispatch, thereby enhancing overall system flexibility.  
The RL agent successfully converged to the same equilibria as determined by the EPEC model used for 
validation. Under extreme conditions of local market power and high certainty in predicting 
congestion, the agent strategically exploited the redispatch market through inc-dec gaming. Allowing 
the agent to optimize both price and volume bids, a flexibility not feasible in the EPEC model, 
demonstrated that such strategies remain advantageous even under cost-based remuneration 
regimes. However, the resulting profit margins were still only one-third of those achieved under 
market-based remuneration. Extending the analysis to our four-market scenario revealed a 5% 
reduction in total system costs under the combined procurement use case. However, despite retaining 
local market power, the RL agent exploited the redispatch market less efficiently, highlighting the 
challenges posed by increased market flexibility. The absence of perfect information made it more 
challenging for the agent to detect action-reaction patterns in a highly flexible system, leading to more 
conservative bidding behavior. To deepen our understanding, we further increased the procured 
balancing capacity to fully cover redispatch needs. However, this raised total system costs by 60%, as 
it introduced new strategic opportunities for the RL-agent to leverage local market power. These 
findings highlight that while increased system flexibility can enhance efficiency; it must be carefully 
monitored by regulatory authorities to mitigate potential market manipulation risks.  
Finally, we evaluated market outcomes by introducing a VPP agent based on MILP optimization to 
explore cross-market opportunities using the same dataset as the RL agent. Unlike the RL agent, the 
VPP agent exhibited no significant profit shifts between scenarios. We argue that this outcome stems 
primarily from the extreme market power granted to the RL agent: it competes exclusively against 
rule-based and conservative bidders without assuming perfect information, whereas the MILP-based 
VPP agent operates with complete knowledge of market conditions, enabling less conservative 
decision-making in a high-flexibility setting. Nevertheless, the resulting strategy still yields lower 
overall profits compared to the RL agent. 
Based on these results, it is evident that while gaming remains an inherent risk, the presence of local 
market power amplifies its impact. However, our findings indicate that greater market flexibility does 
not necessarily increase gaming opportunities; rather, it can reduce them, as higher system flexibility 
adds uncertainty for strategic gaming while maintaining or even increasing activation probabilities for 
suppliers. Without confidence in congestion patterns, exploiting potential gaming opportunities 
becomes too risky, as failed attempts can have legal and financial consequences. Moreover, market-
based remuneration can incentivize competition, reducing the risk of emerging local market power. 
This, in turn, enables a more efficient allocation of resources, ultimately lowering total system costs. 
Nevertheless, continuous market monitoring will be essential when introducing new mechanisms like 
the proposed use case. Further research should address how regulatory frameworks can effectively 
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balance market flexibility and competition while minimizing unintended strategic behavior. Ensuring 
this balance will be crucial as electricity markets evolve toward more dynamic and interconnected 
systems. Our results highlight the potential of reinforcement learning in enhancing market design and 
underscore the importance of carefully managing bidding flexibilities to maintain market efficiency 
and integrity. As regulatory frameworks adapt to these evolving conditions, thoughtful policy design 
will be essential for mitigating risks while fostering a competitive and efficient electricity sector. 
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8. Glossary 
 

S State space (set of all possible states in the environment) 

A Action space (set of all possible actions an agent can take) 

R Reward function (determines the reward for a given state-action pair) 

P Policy distribution (probability distribution over actions given a state) 

Q Q-value (estimates the expected return of taking an action under a policy) 

π Policy function (maps states ss to actions aa) 

γ Discount factor (weights future rewards in reinforcement learning) 

τ Learning rate for target networks (controls update speed of target networks) 

θ Parameters of neural networks (weights of function approximators) 

L Loss value for critic network (measures prediction error of the value function) 

∇𝜃𝜋𝐽 Gradient to update the actor network (adjusts policy parameters to maximize rewards) 

y Target value (expected return used for training value networks) 

SC Sold capacity (amount of energy sold in the market) 

CP Clearing price (final price at which trades are settled in the market) 

MC Marginal cost (incremental cost of producing one more unit of energy) 

G Return (cumulative discounted reward in reinforcement learning) 

N Total number of drawn samples (size of the sample set used for learning) 

t Time step index (discrete index for sequential decision-making) 

h Hour index (index representing different hours in a time series) 

j Index of drawn sample (index referring to a specific sample in a batch) 

k Window of visited markets at the current time step (number of past markets considered) 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

26 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

27 
 

9. Appendix 
 
Data Sampling Methodology 

To analyze hourly data over the span of a year while accounting for seasonal and weekly variations, we 
implemented a comprehensive sampling strategy. This approach ensures that our dataset captures 
representative patterns and trends across different seasons and days of the week. 

Dataset Overview 

The original dataset 𝐷 comprises hourly data points collected over an entire year, resulting in a total 
of 8760 data points: 

𝐷 = {𝑥! ∣ 𝑡 = 1,2, … ,8760} 

Seasonal Division 

The year is divided into four seasons, each containing 13 weeks: 
• 𝑆#:	Season 1 (Winter)	
• 𝑆3:	Season 2 (Spring)	
• 𝑆C: Season 3 (Summer)	
• 𝑆D:	Season 4 (Fall)	

For each season 𝑆2 	(𝑗 ∈ {1,2,3,4}), we extract the corresponding subset of the dataset: 

𝐷2 = {𝑥! ∣ 𝑡 ∈ 𝑆2} 

Weekly Sampling 

From each season 𝑆2, we sample one representative week 𝑊2: 

𝑊2 ⊂ 𝐷2  

Daily and Hourly Sampling 

Within each sampled week 𝑊2, we further divide each day into four consecutive 6-hour intervals: 
• Interval 1:	[0: 00 − 05: 59)	
• Interval 2:	[6: 00 − 11: 59)	
• Interval 3:	[12: 00 − 17: 59)		
• Interval 4:	[18: 00 − 23: 59)		

For each day	𝑑 ∈ {1,2, … ,7} of the sampled week, we select one data point from each of these 
intervals, resulting in four data points per day: 

𝑊2 = {𝑥!',),* ∣ 𝑑 ∈ {1,2, … ,7}, ℎ ∈ {1,2,3,4}} 

Where: 
• 𝑡2,-,#: Time sampled from the interval [0: 00 − 5: 59) on day 𝑑 of season 𝑗. 
• 𝑡2,-,3: Time sampled from the interval [6: 00 − 11: 59) on day 𝑑 of season 𝑗. 
• 𝑡2,-,C: Time sampled from the interval [12: 00 − 17: 59) on day 𝑑 of season 𝑗. 
• 𝑡2,-,D: Time sampled from the interval [18: 00 − 23: 59) on day 𝑑 of season 𝑗. 

Final Sampled Dataset 

The final dataset 𝑺 is the union of the sampled weeks from each season: 

𝑺 = ⋃2&#D 	𝑊2  

This results in a dataset containing four weeks of data, one from each season, with each week 
comprising seven days, and each day containing four data points sampled from each 6-hour interval. 

 


